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We consider a Fabry-Perot resonance �a transmission band edge resonance� in periodic layered structures
involving birefringent layers. In a previous publication �Phys. Rev. E 72, 036619 �2005�� we have shown that
the presence of birefringent layers with misaligned in-plane anisotropy can dramatically enhance the perfor-
mance of the photonic-crystal resonator. It allows us to reduce its size by an order of magnitude without
compromising on its performance. The key characteristic of the enhanced slow-wave resonator is that the
Bloch dispersion relation ��k� of the periodic structure displays a degenerate photonic band edge, in the
vicinity of which the dispersion curve can be approximated as �����k�4, rather than �����k�2. Such a
situation can be realized in specially arranged stacks of misaligned anisotropic layers. On the down side, the
presence of birefringent layers results in the slow-wave resonance being coupled only with one �elliptic�
polarization component of the incident wave, while the other polarization component is reflected back to space.
In this paper we show how a small modification of the periodic layered array can solve the above fundamental
problem and provide a perfect impedance match regardless of the incident wave polarization, while preserving
the giant slow-wave resonance characteristic of a degenerate photonic band edge. Both features are of critical
importance for many practical applications, such as the enhancement of various light-matter interactions, light
amplification and lasing, optical and microwave filters, antennas, etc.
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I. INTRODUCTION

Wave propagation in spatially periodic media, such as
photonic crystals, can be qualitatively different from any uni-
form substance. The differences are particularly pronounced
when the wavelength is comparable to the primitive transla-
tion L of the periodic structure �1–7�. The effects of strong
spatial dispersion culminate at stationary points �s=��ks� of
the Bloch dispersion relation where the group velocity u
=�� /�k of a traveling Bloch wave vanishes

��

�k
= 0, at k = ks, � = �s = ��ks� . �1�

One reason for this is that vanishing group velocity always
implies a dramatic increase in density of modes at the respec-
tive frequency. In addition, vanishing group velocity also im-
plies certain qualitative changes in the eigenmode structure,
which can be accompanied by some spectacular effects in
wave propagation. A particular example of the kind is the
frozen mode regime associated with a dramatic amplitude
enhancement of the wave transmitted to the periodic medium
�8–13�. In this paper, we focus on a different slow-wave
effect, namely, on a Fabry-Perot resonance in bounded pho-
tonic crystals. This slow wave phenomenon, illustrated in
Figs. 1 and 2, is also referred to as the transmission band
edge resonance. There are some similarities between the fro-
zen mode regime and the slow-wave resonance in plane-
parallel photonic crystals. Both effects are associated with
vanishing group velocity at stationary point �1� of the Bloch
dispersion relation. As a consequence, both effects are
strongly dependent on specific type of spectral singularity
�1�. A fundamental difference though is that the frozen mode
regime is not a resonance phenomenon in the sense that it is
not particularly sensitive to the shape and size of the photo-
nic crystal. For instance, the frozen mode regime can occur

even in a semi-infinite periodic structure, where the incident
plane wave is converted to a frozen mode slowly propagating
through the periodic medium until it is absorbed �8–13�. By
contrast, in the case of a slow-wave resonance, the entire
bounded periodic structure acts as a resonator, resulting in a
strong sensitivity of the resonance behavior to the size and
shape of the photonic crystal.

It is also important to distinguish between two qualita-
tively different classes of photonic-crystal resonators. The
first class comprises resonance cavities where the role of
periodic dielectric structure reduces to electromagnetic �EM�
field confinement by reflecting it back to the cavity interior.
The resonance frequency �or frequencies� of such photonic
cavities usually lies in a frequency gap �a stop band� of the
photonic crystal. The periodic dielectric array here plays the
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FIG. 1. �Color online� Scattering problem of a plane wave nor-
mally incident on a periodic stack of dielectric layers. The indices I,
R, and P denote the incident, reflected, and transmitted waves, re-
spectively. The field inside the periodic medium is �T. In the case
of a slow wave resonance, the incident wave frequency lies in a
transmission band of the periodic structure, close to a band edge, as
illustrated in Fig. 2.
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role of a distributed Bragg reflector. The number of reso-
nance modes depends on the cavity size. It can be a single
mode localized on an isolated defect inside the photonic
crystal �14,15�. Or the cavity can support multiple reso-
nances, if its size significantly exceeds the light wavelength.
More detailed information on photonic crystal cavities can
be found in numerous papers and monographs on optics and
photonics �see, for example, Ref. �16�, and references
therein�. In this paper, we will not further discuss this sub-
ject.

The second class of photonic-crystal resonators comprises
the so-called slow-wave resonators. They are qualitatively
different from the band-gap cavities. In slow-wave photonic-
crystal resonators, the reflectors may not be needed at all, as
shown in the example in Fig. 1. The role of the periodic
structure here is to support slow EM waves. The resonance
frequencies lie in the transmission bands of the photonic
crystal—not in band gaps, although, they can be very close
to a band edge �1�, as shown in Fig. 2. A typical example of
slow wave resonance in a photonic crystal is presented by the
transmission band edge resonance, illustrated in Figs. 1 and
2. In certain cases, slow-wave resonators can provide signifi-
cant advantages over cavity resonators. They are used for the
enhancement of light-matter interactions, such as nonlinear
and nonreciprocal effects, optical activity, light amplification
and lasing, etc. They can also be used in optical and micro-
wave filters, delay lines, as well as for the enhancement of
antenna gain and directionality. More detailed information
can be found in the extensive literature on the subject �see,
for example, Refs. �4–6,17–22�, and references therein�.

In this paper we describe a slow-wave photonic-crystal
resonator with drastically reduced dimensions and enhanced
performance, compared to that of a common Fabry-Perot
resonator based on a periodic stack of nonbirefringent layers.
The idea is to employ periodic structures supporting the dis-

persion relations different from those allowed in periodic ar-
rays of nonbirefringent layers. Indeed, periodic arrays in-
volving birefringent layers can display stationary points �1�
different from a regular photonic band edge in Fig. 2�a�.
Some examples are shown in Fig. 3. Slow waves associated
with such stationary points can produce giant transmission
band-edge resonances, much more powerful compared to
those achievable in common layered structures. The first step
in this direction was made in Ref. �23�, where it was shown
that the transmission band-edge resonance in the vicinity of a
degenerate photonic band edge �DBE� in Fig. 3�b� produces
much better results, compared to a regular photonic band
edge �RBE� of Figs. 2�a� and 3�a�. Specifically, at the fre-
quency of DBE related giant slow-wave resonance, the elec-
tromagnetic energy density inside the photonic-crystal can be
estimated as

�WDBE� � WIN
4, �2�

where WI is the energy density of the incident wave and N is
the total number of unit cells in the periodic stack. By com-
parison, the average EM energy density at a regular trans-
mission band-edge resonance in Fig. 2 is

�WRBE� � WIN
2. �3�

The estimations �2� and �3� imply that the Q factor of a
DBE-based slow-wave resonator can be by factor N2 higher
compared to that of a RBE related Fabry-Perot resonator of
the same size; this a huge difference. A detailed comparative
analysis of the giant DBE related slow-wave resonance ver-
sus the regular transmission band edge resonance can be
found in Ref. �23�.

On the down side, periodic structures with birefringent
layers have a fundamental problem—their reflectance and
transmittance are essentially dependent on the incident wave
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FIG. 2. �Color online� �a� A

fragment of a typical Bloch k-�
diagram of a periodic array com-
posed of nonbirefringent layers;
g1 and g2 are the edges of the low-
est photonic band gap. Each spec-
tral branch is doubly degenerate
with respect to the wave polariza-
tion. �b� Transmission dispersion
t��� of the respective finite peri-
odic stack; the sharp peaks near
the edges of the transmission
bands are associated with slow-
wave Fabry-Perot resonances, also
known as transmission band edge
resonances. The location �6� of
the resonance peaks depends on
the number N of unit cells L in
the periodic stack. Wave number
k and frequency � are expressed
in units of L−1 and cL−1,
respectively.
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polarization. This dependence is particularly strong near the
edges of transmission bands, where the slow-wave reso-
nances occur. In particular, a DBE related giant transmission
resonance described in Ref. �23� is coupled only with one
�elliptic� polarization component of the incident wave, while
the other polarization component is reflected back to space
by the photonic crystal boundary �23�. In other words, at the
resonance frequency, a periodic stack involving birefringent
layers acts as a polarizer, reflecting back to space roughly
half of the incident wave energy. This behavior is illustrated
in Figs. 4 and 5. Similar problem exists in all different modi-
fications of the frozen mode regime considered in Refs.
�8–13�. For many applications, such a polarization selectivity
may not be acceptable. In this paper we offer a solution to
the above problem. We show how to utilize all the incident
wave energy, while preserving the extraordinary performance
of the DBE based photonic-crystal resonator. The idea is to
modify the periodic layered array so that instead of a degen-
erate band edge, the respective dispersion curve develops a
split photonic band edge �SBE� shown in Fig. 3�b�. Under
certain conditions specified below, the photonic resonator
with a SBE will display a giant transmission band edge reso-
nance, similar to that of a DBE. But, in addition, the SBE
resonator couples with the incident wave regardless of its
polarization and, therefore, utilizes all the incident EM
radiation—not just one polarization component. The latter
feature is of critical importance for a variety of practical
applications. Similar approach can be applied not only to a
photonic-crystal cavity resonance, but also to all different
modifications of the frozen mode regime described in Refs.
�8–13�.

II. GEOMETRICAL DESCRIPTION OF SLOW-WAVE
RESONANCE

Steady-state Fabry-Perot resonance in a plane-parallel
photonic crystal is commonly described as a standing Bloch

wave composed of a pair of reciprocal propagating Bloch
modes with equal and opposite wave numbers and group
velocities

�T�z� = �k�z� + �−k�z�, 0 � z � D . �4�

At a resonance, the two propagating Bloch components in
Eq. �4� have large and nearly equal amplitudes and low
group velocities. Two nodes of the standing wave coincide
with the photonic crystal boundaries at z=0 and z=D, which
determines the resonance values km of the Bloch wave num-
ber k

km � k0 ±
�

NL
m, m = 1,2, . . . , �5�

where k0 coincides with one of stationary points �1� of the
dispersion relation ��k� �usually, k0=0 or ��. The integer m
denotes the resonance peaks in order of their distance from
the respective photonic band edge at k0. The resonance fre-
quencies �m are expressed in terms of the Bloch dispersion
relation

�m = ��km� , �6�

and located close to the photonic band edge at �0=��k0�.
According to Eq. �5�, the proximity of the resonances to the
photonic band edge is determined by the number N of unit
cells in the periodic stack. The expressions �5� and �6� only
apply if

N � m . �7�

The simple representation �4� for the resonance field dis-
tribution works very well in the vicinity of a regular photonic
band edge �RBE�. In the case of a giant transmission reso-
nance associated with a degenerate photonic band edge
�DBE�, the above simple picture does not apply. Indeed, ac-
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FIG. 3. �Color online� Frag-
ments of the k-� diagrams of the
periodic layered structure in Fig. 6
for two different values of the ra-
tio A /B of the layer thicknesses.
Regular, degenerate, and split
photonic band edges are denoted
by symbols g, d, and b, respec-
tively. The Bloch wave number k
and the frequency � are expressed
in units of 1 /L and c /L.
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cording to Ref. �23�, in the vicinity of a DBE, the evanescent
mode contribution becomes equally important, and the reso-
nance field �T�z� cannot be viewed as a simple standing
Bloch wave �4�. Yet another qualitatively different situation
can occur in the vicinity of a split photonic band edge �SBE�,
provided that the magnitude of the split between the edges b1
and b2 in Fig. 3�b� is small enough so that the respective
SBE is close in shape to a DBE. In this latter case, a giant
transmission resonance �2� is produced by interference of
two pairs of reciprocal propagating Bloch waves

�T�z� = �A�z� + �B�z�, 0 � z � D , �8�

where

�A�z� = �kA
�z� + �−kA

�z� �9�

and

�B�z� = �kB
�z� + �−kB

�z� . �10�

Either a DBE or a SBE can only exist in periodic stacks
involving misaligned birefringent layers, example of which
is shown in Fig. 6. The same photonic crystal can develop
both a DBE and a SBE at different frequencies, as shown in
Fig. 3�b�. Either of them can produce a giant transmission
resonance �2�. The difference, though, is that a DBE related
giant transmission resonance is coupled with only one of the

two polarization components of the incident light �13,23�, as
shown in Figs. 4 and 5. By contrast, an equally powerful
RBE related transmission resonance can be polarization in-
dependent, as illustrated in Figs. 7 and 8. The latter feature is
a significant advantage for most applications.

For simplicity, in further consideration we restrict our-
selves to the case of a plane monochromatic wave normally
incident on a layered structure, as shown in Fig. 1. The re-
sults can be easily generalized to the case of oblique inci-
dence, as it was done, for example, in Refs. �9,13�. Basic
notations and definitions of electrodynamics of stratified me-
dia involving birefringent layers are explained in Appendix
A. Similar notations and terminology are used, for instance,
in Refs. �8,9,13,23�.

A. Transmission band-edge resonance in the vicinity of a split
photonic band edge

Consider the vicinity of a split photonic band edge �SBE�
on the k-� diagram in Fig. 3�b�. The physical characteristics
of the periodic structure are chosen so that the SBE in Fig.
3�b� is close in shape to a DBE. The frequency range

�0 � � � �b, �11�

covers a narrow portion of the transmission band which in-
cludes the SBE. At any given frequency from Eq. �11�, there
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FIG. 4. �Color online� Transmission dispersion of the periodic stack of 18 unit cells at frequency range including the DBE at �=�d. The
respective k-� diagram is shown in Fig. 3�b�. In the cases �a� and �b�, the incident wave in linearly polarized. In the cases �c� and �d�, the
incident wave polarization is adjusted so that at any given frequency it corresponds to a single mode excitation regime: in the case �c� it is
a single propagating mode, while in the case �d� it is a single evanescent mode. Obviously, in the latter case the incident wave is reflected
back to space. The frequency � is expressed in units of cL−1.
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are two pairs of reciprocal Bloch waves with very low group
velocity and different polarizations; each pair being capable
of producing its own slow-wave cavity resonance with the
resonance conditions similar to Eq. �5�. Our focus is on the
possibility of the two resonances occurring at the same fre-
quency. Such a situation will be referred to as the double
resonance. It turns out that the double transmission band
edge resonance is as powerful as the giant resonance associ-
ated with a DBE. However, in addition, a SBE related reso-
nance utilizes all the energy of the incident wave regardless
of its polarization. By contrast, a DBE based giant transmis-
sion resonance is coupled only with one polarization compo-
nent of the incident wave; the rest of the incident wave en-
ergy being reflected back to space. This important difference
is obvious if we compare the DBE related transmission dis-
persion shown Fig. 4 and the SBE related transmission dis-
persion shown in Fig. 7.

Let us introduce the following dimensionless notations for
the small deviation of the wave number and the frequency
from the respective stationary point:

� = 	k − k0	L, ���� = ���k� − ��k0��L/c . �12�

According to Eqs. �5� and �6�, the resonance values of � and
� are

�m �
�

N
m � 1, �m � ���m� . �13�

The most powerful resonance is usually the one closest to the
respective photonic band edge

�1 �
�

N
� 1, �1 � ���1� . �14�

Let us now consider a dispersion curve with a SBE in
more detail. If the split between the twin band edges b1 and
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FIG. 6. �Color online� Periodic layered structure with a unit cell
L containing two misaligned anisotropic A layers, and one isotropic
B layer. The respective dielectric permittivity tensors are given in
Eqs. �B1�, �B2�, and �B4�. This is the simplest layered array sup-
porting the Bloch dispersion relation with a DBE and/or a SBE, as
shown in Fig. 3�b�.
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FIG. 5. �Color online�Smoothed energy density distribution W�z� at frequency of the first �closest to the DBE� giant transmission band
edge resonance in Fig. 4 for four different polarizations of the incident wave. In a single mode excitation regime of �c� and �d�, the
transmission resonance is suppressed. Particularly so in the case �d�, where the EM field inside the periodic medium corresponds to a single
evanescent mode. The distance z is expressed in units of L.
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b2 in Figs. 3�b� is small, the dispersion relation in the vicinity
of SBE can be approximated as

���� �
a

2
�2 +

b

4
�4, �15�

where

a/b � 0 �16�

and

	a/b	 � 1. �17�

The inequality �16� is the condition for SBE. Indeed, in the
opposite case of

a/b 	 0, �18�

the dispersion curve �15� would develop a RBE at �=0, as
shown in Fig. 3�a�. While in the case

a/b = 0, �19�

the dispersion curve �15� would have a DBE at �=0. The
additional inequality �17� is the condition for the proximity
of the SBE to a DBE. This proximity allows us to use the
expansion �15� in the frequency range spanning both twin
edges of the SBE. More importantly, the condition �17� is

essential for the phenomenon of the giant transmission reso-
nance in the vicinity of SBE.

There are three stationary points associated with a SBE.
The first one is trivial

�a = 0, �a = 0. �20�

It is located either at the center of the Brillouin zone, or at its
boundary. The other two stationary points correspond to the
actual SBE

±�b = ± 
− a/b, �b = − a2/4b . �21�

Taking into account Eq. �21�, the condition �17� for the prox-
imity of the SBE to a DBE can be recast as

�b � 1. �22�

The condition �22� implies that the points b1 and b2 on the
dispersion curve are close to each other.

In what follows, we assume for simplicity that

b � 0 � a . �23�

In this case, the SBE in question corresponds to the upper
edge of the transmission band, as shown in Fig. 3�b�. The
alternative case of
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FIG. 7. �Color online� Manifestation of SBE related double resonance in the transmission dispersion t��� of periodic stack with N
=18. The respective k-� diagram is shown in Fig. 3�b�. Observe that at the resonance frequency, the stack transmittance is close to unity
regardless of the incident wave polarization. By contrast, in the case of DBE-related giant transmission resonance in Fig. 4, the impedance
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a � 0 � b �24�

corresponds to the SBE being the lower edge of the respec-
tive transmission band. There is no qualitative difference be-
tween the two cases.

At any given frequency � within the range

�a � � � �b, �25�

there are two pairs �9� and �10� of reciprocal Bloch waves.
Each pair comprises one forward and one backward propa-
gating modes with equal and opposite wave numbers and
group velocities

±�A = ± �b
1 −
1 −
�

�b
, �a � � � �b, �26�

±�B = ± �b
1 +
1 −
�

�b
, � � �b. �27�

The pair of wave numbers �26� corresponds to the concave
portion of the dispersion curve �15�, while the pair of wave
numbers �27� corresponds to the convex portion of the dis-
persion curve. Obviously,

�A � �B at �a � � � �b. �28�

B. Conditions for the double SBE resonance

Within the frequency range �25�, either pair of the recip-
rocal Bloch waves �9� and �10� can develop a transmission
resonance. Of particular interest here is the case where the
two resonances occurs at the same or almost the same fre-
quency. This situation is illustrated in Fig. 9�c�, as well as in
Figs. 7 and 8.

Let us start with the resonance created by the reciprocal
pair �9� of Bloch waves corresponding to the concave section
of the dispersion curve in Fig. 3�b�. It is possible that the
frequency range �25� contains only a single cavity
resonance—the one with m=1. Such a case is determined by
either the proximity of the SBE to a DBE, or by the right
choice of the number N of the unit cells in the stack. Accord-
ing to Eqs. �21� and �5�, the condition for a single resonance
is

�1 � �b � 2�1, �A = �1 =
�

N
. �29�

The respective resonance frequency �A is determined by Eqs.
�6� and �15�

�A = �1 =
a

2
�1

2 +
b

4
�1

4, �30�

where �1=� /N.
Consider now the resonance created by the reciprocal pair

�10� of Bloch waves corresponding to the convex section of
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FIG. 8. �Color online� Smoothed energy density distribution at frequency of the SBE related giant transmission resonance in Fig. 7 for
four different polarizations of the incident wave. The cases �c� and �d� relate to a single mode excitation regime. The distance z is expressed
in units of L.
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the dispersion curve. Let us impose the condition

�A = �B � �r �31�

that both resonances occur at the same frequency �30�. This
condition leads to the following equality:

a

2
�A

2 +
b

4
�A

4 =
a

2
�B

2 +
b

4
�B

4 .

Simple analysis shows that it is only possible if at �=�r we
have

�A = 2�B = 2�1 =
2�

N
.

The relation

�A = 2�B

together with Eqs. �26� and �27� yield

�b =
5

2
�1 =
5

2

�

N
.

The frequency of the double transmission resonance is

vr = �4

5
2

, vb =
2

5
b��

N
2

. �32�

The group velocities of the two reciprocal pairs of Bloch
waves at the resonance frequency vr are

uA = 

3

2
b�1

3 = 

3

2
b��

N
3

and

uB = ± 3b�1
3 = ± 3b��

N
3

.

By comparison, in the case of a DBE related giant trans-
mission band edge resonance, we would have the following
estimation for the resonance frequency v1 and the respective
group velocity of the two propagating Bloch components

v1 �
b

N2 , u1 �
b

N3 .

These estimations are similar to those related to the double
transmission resonance associated with a SBE. In either case,
the average resonance energy density is estimated by Eq. �3�,
which justifies the term “giant” transmission resonance.

Let us remark that the entire consideration of this subsec-
tion was based on the assumption that each pair �9� and �10�
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FIG. 9. �Color online� Transmission dispersion of periodic stacks composed of different number N of unit cells. The frequency range
shown includes SBE on the k-� diagram in Fig. 3�b�. The two curves correspond to two different polarizations of incident wave. In either
case, at any given frequency �, the incident wave polarization is adjusted so that it would excite a single propagating Bloch mode ��A or
�B� in the respective semi-infinite periodic structure. In the case �b� of N=18, the two resonance frequencies nearly coincide, creating
condition for double transmission resonance with perfect impedance matching. The frequency � is expressed in units of cL−1.
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of the reciprocal Bloch modes is responsible for its own in-
dividual transmission resonance, described as a standing
wave �9� or �10�, respectively. While the double resonance at
�r is described as the situation where the frequencies �A and
�B of those individual resonances merely coincide. In fact,
these two transmission resonances can be treated as indepen-
dent only if the respective resonance frequencies �A and �B
are separated. As soon as �A and �B are close to each other,
the contributions of all four propagating Bloch modes to the
resonance field �T�z� in Eq. �8� become equally important.
The latter situation persists even if the incident wave polar-
ization correspond to the, so-called, single mode excitation
regime, defined in Refs. �13,23� for the case of a semi-
infinite periodic structure. In other words, the single mode
excitation regime produces almost pure �A�z� resonance �9�
or �B�z� resonance �10� only if their frequencies are well
separated. Otherwise, the EM field �T�z� is a superposition
of all four Bloch eigenmodes. In such a case, the resonance
field �T�z� cannot be viewed as a simple standing wave �4�
regardless of the incident wave polarization. The physical
reason for such a strong hybridization is that due to the con-
dition �22�, the RBE in question is very close to a DBE. On
the other hand, in the vicinity of a DBE, all four vector
columns �k�z� in Eq. �A4� become nearly parallel to each
other �13,23�. The latter circumstance excludes the possibil-
ity of exciting only one of the two pairs of the reciprocal
Bloch modes �9� or �10� in the situation �31�, where the
resonance conditions �5� are in place for both of them simul-
taneously. Still, the above consideration provides a very use-
ful guidance on the conditions for SBE related giant trans-
mission resonance and allows to find the proper physical
characteristics of the periodic structure.

The bottom line is that the SBE related giant transmission
resonance is as powerful as that related to a DBE. However,
in addition, the SBE related resonance provides a perfect
coupling with the incident wave regardless of its
polarization.

III. CONCLUSION

In summary, we would like to stress that the remarkable
features of the DBE and SBE related giant transmission reso-
nances can be derived from such fundamental characteristics
of the periodic composite medium as its electromagnetic dis-
persion relation. Specific details of the periodic array, such as
physical characteristics of the constitutive components, or
structural geometry, are only important as long as the sym-
metry of the periodic array is compatible with the existence
of the required spectral singularities.
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APPENDIX A: ELECTRODYNAMICS OF STACKS OF
BIREFRINGENT LAYERS

In this appendix we briefly introduce some basic notations
and definitions of electrodynamics of stratified media involv-
ing birefringent layers. A detailed and consistent description
of the subject, along with numerous references, can be found
in Refs. �8,9,13,23�, where similar notations and terminology
are used. For simplicity, we restrict ourselves to the case of a
plane monochromatic wave normally incident on a layered
structure, as shown in Fig. 1. The results can be easily gen-
eralized to the case of oblique incidence, as was done, for
example, in Refs. �9,13�.

Time-harmonic electromagnetic field inside and outside
the layered medium can be described by the vector column

��z� = �
Ex�z�
Ey�z�
Hx�z�
Hy�z�

� , �A1�

where E� �z� and H� �z� are time-harmonic electric and mag-
netic fields. The z direction is normal to the layers. The val-
ues of � at any two locations z and z� are related by the
transfer matrix T�z ,z�� defined by

��z� = T�z,z����z�� . �A2�

The elements of the transfer matrix are expressed in terms of
material tensors and other physical characteristics of the
stratified medium.

Let �I, �R, and �P be the incident, reflected, and trans-
mitted waves, respectively, as shown in Fig. 1. To the left of
the stack �at z�0�, the electromagnetic field is a superposi-
tion of the incident and reflected waves. To the right of the
stack �at z	D�, there is only the transmitted wave. The field
inside the periodic medium is denoted as �T. All four trans-
verse field components in Eq. �A1� are continuous functions
of z, which produces the following boundary conditions at
z=0 and z=D in Fig. 1:

�I�0� + �R�0� = �T�0�, �P�D� = �T�D� . �A3�

Inside the periodic stratified medium, at any given fre-
quency �, the time-harmonic field �T�z� can be represented
as a superposition

�T�z� = �k1�z� + �k2�z� + �k3�z� + �k4�z�, 0 � z � D

�A4�

of four Bloch eigenmodes, each of which satisfies the fol-
lowing relation:

�k�z + L� = eikL�k�z� . �A5�

Real k correspond to propagating �traveling� Bloch modes,
while complex k correspond to evanescent modes. Depend-
ing on the frequency �, the full set of four Bloch eigenmodes
in Eq. �A4� may include only propagating modes, only eva-
nescent modes, or both. In any event, the respective set
�k1 ,k2 ,k3 ,k4� of four Bloch wave numbers satisfies the rela-
tion
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�k1,k2,k3,k4� = �k1
*,k2

*,k3
*,k4

*� . �A6�

Taking into account Eq. �A6�, one can distinguish the follow-
ing three possibilities.

�i� All four Bloch modes in Eq. �A4� are propagating

k1 = k1
*, k2 = k2

*, k3 = k3
*, k4 = k4

*. �A7�

�ii� All four Bloch modes in Eq. �A4� are evanescent. This
is the case when the frequency � falls into a photonic band
gap. According to Eq. �A6�, one can assume that in this case

k1 = k2
* � k1

*, k3 = k4
* � k3

*. �A8�

�iii� Two of the Bloch modes in Eq. �A4� are propagating
modes, while the other two are evanescent. According to Eq.
�A6�, one can assume that in this case

k1 = k1
*, k2 = k2

*, k3 = k4
* � k3

*. �A9�

In all cases, propagating modes with u	0 and evanescent
modes with k�	0 are referred to as forward waves. The
propagating modes with u�0 and evanescent modes with
k��0 are referred to as backward waves.

In reciprocal �nonmagnetic� periodic structures, the Bloch
dispersion relation ��k� is always symmetric with respect to
the points k=0 and k=� /L of the Brillouin zone

��k0 + k� = ��k0 − k�, where k0 = 0, �/L . �A10�

In periodic structures composed of nonbirefringent layers,
every Bloch wave is doubly degenerate with respect to po-
larization. A typical k-� diagram for such a case is shown in
Fig. 2�a�. If, on the other hand, some of the layers display an
in-plane anisotropy or gyrotropy, the polarization degeneracy
can be lifted. The respective k-� diagrams are shown in Fig.
3.

The speed of a traveling wave in a periodic medium is
determined by the group velocity u=�� /�k. Normally, every
spectral branch ��k� develops stationary points �1�, where
the group velocity of the corresponding propagating mode
vanishes. Usually, such points are located at the center and at
the boundary of the Brillouin zone

ks = k0 = 0, �/L . �A11�

This is always the case in periodic layered structures com-
posed of nonbirefringent layers, where all stationary points
coincide with photonic band edges, as shown in Fig. 2�a�. If,
on the other hand, some of the layers in a unit cell are bire-
fringent, then in addition to Eq. �A11�, some dispersion
curves can also develop a reciprocal pair of stationary points
corresponding to a general value of the Bloch wave number
k, as shown in Fig. 3�b�. The respective portion of the k-�
diagram can be described as a split band edge �SBE�. The
dispersion relation can develop a DBE or a SBE only if the
periodic layered array has birefringent layers with mis-
aligned in-plane anisotropy �13,23�. An example of such a
layered structure is shown in Fig. 6.

Under normal circumstances, evanescent modes decay ex-
ponentially with the distance from the periodic structure
boundaries. In such cases, the evanescent contribution to �T
can be significant only in close proximity to the surface or
some other defects of the periodic structure. The situation

can change dramatically in the vicinity of a stationary point
�1�. At first sight, stationary points �1� relate only to propa-
gating Bloch modes. But in fact, in the vicinity of every
stationary point frequency �s, the imaginary part k� of the
Bloch wavenumber of at least one of the evanescent modes
also vanishes. As a consequence, the respective evanescent
mode decays very slowly, and its role may extend far beyond
the photonic crystal boundary.

The final and most important remark is related to the EM
eigenmodes in the vicinity of a DBE or such a RBE that is
close in shape to a DBE. In either case, all four vector-
columns �A1� corresponding to the four Bloch modes in Eq.
�A4� are nearly parallel to each other �see the details in Refs.
�12,13,23��. The latter circumstance is responsible for the
giant EM field amplitude at the respective transmission
resonance.

I. ENERGY FLUX: TRANSMISSION AND REFLECTION
COEFFICIENTS

Let SI, SR, ST, and SP be the energy fluxes of the respec-
tive waves in Fig. 1. The transmission and reflection coeffi-
cients t and r are defined as

t =
SP

SI
, r = −

SR

SI
. �A12�

In the case of losses medium, the Poynting vector S is inde-
pendent of z

S � SI + SR = ST = SP.

In such a case t=1−r=S /SI.
In the general case of the time-harmonic EM field �T�z�

being a superposition �A4� of several Bloch modes, propa-
gating and/or evanescent, the contribution of each propagat-
ing mode �k to the total energy flux S is independent of
others and can be expressed in terms of its group velocity
and amplitude

Sk = Wkuk, where Wk � �	�k	�2. �A13�

In the particular case of a single propagating mode, the quan-
tity Wk in Eq. �A13� is equal to the energy density averaged
over a unit cell L. By contrast, a single evanescent mode
never transfers energy. Only a combination of forward and
backward evanescent modes can contribute to the energy flux
�see p. 327 in Ref. �12��.

2. ENERGY DENSITY AND ENERGY FLUX AT
RESONANCE FREQUENCY

Consider the energy flux at transmission band edge reso-
nance formed by a pair �A15� of reciprocal Bloch waves.
Assume that the amplitude of the incident wave in Fig. 1 is
unity and the transmission coefficient t in Eq. �A12� at reso-
nance frequency is also of the order of unity. The boundary
conditions �A3� together with Eq. �4� yield

�T�0� = �k�0� + �−k�0� � 1,
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�T�D� = �k�D� + �−k�D� � 1. �A14�

According to Eq. �A13�, the energy flux associated with the
time-harmonic field �T�z� in Eq. �4� is

S = Sk + S−k � Wku�k� + W−ku�− k� = �Wk − W−k�u�k� ,

�A15�

where

Wk � �	�k	2�, W−k � �	�−k	2� .

Let us see under what conditions the finite resonance
transmission is compatible with the vanishing group velocity
in the vicinity of stationary point �1�, where the transmission
band edge resonance occurs. In the vicinity of stationary
point �1�, the magnitude u�k� of the group velocity in Eq.
�A15� is vanishingly small. The fact that the resonance en-
ergy flux remains of the order of unity implies that the am-
plitude of the Bloch components in Eq. �A15� increases so
that

Wk − W−k � u−1, as u → 0. �A16�

In order to reconcile the boundary condition �A14� with the
requirement �A16� of a finite energy flux, we have to impose
the following requirement on the amplitudes of the two
Bloch components

Wk − W−k � 
Wk � u−1, as u → 0. �A17�

The relation �A17� was derived under the assumption that
the time-harmonic filed �T�z� inside the periodic medium is
a superposition �4� of one forward and one backward propa-
gating Bloch waves with equal and opposite wave numbers
and group velocities. This is always the case for RBE related
transmission resonance. However, the representation �4� is
not applicable to the case of a DBE related giant resonance,
because in this case the contribution of the evanescent modes
is equally important �23�. Finally, in the case of SBE related
transmission resonance, the relations �4� and �A17� may or
may not apply, depending on whether the resonance field
�T�z� is formed by a single pair of propagating Bloch
modes, or the contribution of all four propagating modes is
equally important.

APPENDIX B: PHYSICAL CHARACTERISTICS OF THE
PERIODIC LAYERED STRUCTURE USED IN

NUMERICAL SIMULATIONS

The simplest periodic layered structure supporting a DBE
or a SBE at normal propagation is shown in Fig. 6. A unit
cell L contains one isotropic B layer and two misaligned
anisotropic layers A1 and A2 with inplane anisotropy. The

isotropic layers have the thickness B and the dielectric per-
mittivity

�̂B = ��B 0 0

0 �B 0

0 0 �B
� . �B1�

The dielectric permittivity tensors �̂A in each anisotropic A
layer has the form

�̂A��� = ��A +  cos 2�  sin 2� 0

 sin 2� �A −  cos 2� 0

0 0 �3
� , �B2�

where the parameter  characterizes the magnitude of in-
plane anisotropy, and the angle � determines the orientation
of the anisotropy axes in the x-y plane. All the A layers have
the same thickness A and the same magnitude  of inplane
anisotropy. The only difference between the adjacent aniso-
tropic layers A1 and A2 in Fig. 6 is their orientation �. An
important characteristic of the periodic structure in Fig. 6 is
the misalignment angle

� = �1 − �2 �B3�

between the layers A1 and A2. This angle determines the
symmetry of the periodic array and, eventually, the kind of
k-� diagram it can display.

In all numerical simulations related to the periodic layered
structure in Fig. 6 we use the following values of the mate-
rial parameters in Eqs. �B1�–�B3�

�B = 16.0, �A = 4.7797,  = 3.4572, � = �/6.

�B4�

At normal propagation, the numerical value of �3 in Eq. �B2�
is irrelevant. The relative thickness of the A and B layers, can
be different in different examples.

In all plots of the field distribution inside periodic media
at 0�z�D we, in fact, plotted the following physical quan-
tity:

�	��z�	2� = �E� �z� · E� *�z� + H� �z� · H� *�z��L, �B5�

which is the squared field amplitude averaged over a local
unit cell. The actual function 	��z�	2, as well as the electro-
magnetic energy density distribution W�z�, are strongly os-
cillating functions of the coordinate z, with the period of
oscillations coinciding with the unit cell length L. Given the
relation W� 	��z�	2, the quantity �B5� can also be qualita-
tively interpreted as the smoothed energy density distribu-
tion, with the correction coefficient of the order of unity. In
all plots, the distance z, the wavenumber k, and the
frequency � are expressed in units of L, L−1, and cL−1, re-
spectively.
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